skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Huiting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wong, A (Ed.)
    Abstract We present the first chromosome-level genome assembly and annotation for the genus Cuscuta, a twining and leafless parasitic plant of the morning glory family (Convolvulaceae). C. campestris, the study species, is a widely studied model parasite, due in part to its worldwide occurrence as a weed of agricultural and natural plant communities. The species has served as a model parasite for studies of parasite biology, haustorium development, growth responses to chemical and light stimuli, gene content and expression, horizontal gene transfer, and interspecies RNA movement and has a recently developed transformation system. The 505 Mb (1C) genome is assembled into 31 chromosomes and supports annotation of 47,199 protein-coding genes, 214 small RNA loci (including 146 haustoria-specific miRNAs), and 3,238 interspecies mobile mRNA loci. C. campestris is a recent tetraploid with a high retention of duplicated genes and chromosomes, with less than 8% nucleotide divergence between homoeologous chromosomes. We also show that transformation of C. campestris with the RUBY marker system allows visualization of transformed Cuscuta-derived fluorescent mobile molecules that have entered the host stem. This genome, with an associated genome browser and BLAST server, will be of value for scientists performing fundamental research in a wide range of molecular, developmental, population, and evolutionary biology, as well as serve as a research tool for studying interspecies mobile molecules, generating genetic markers for species and genotype identification, and developing highly specific herbicides. 
    more » « less
    Free, publicly-accessible full text available August 20, 2026
  2. Abstract Advances in agricultural genetic, genomic, and breeding (GGB) technologies generate increasingly large and complex datasets that need to be adequately managed and shared. While several agricultural biological databases maintain and curate GGB data, not all scientists are aware of them and how they can be used to access and share data. In addition, there is the need to increase scientists’ awareness that appropriate data archiving and curation increases data longevity and value and bolsters scientific discoveries’ reproducibility and transparency. The AgBioData Education working group aims to address these unmet needs and developed a modular curriculum for educators teaching the basics of biological databases and the findable, accessible, interoperable, and reusable (FAIR) principles to undergraduate and graduate students (https://www.agbiodata.org/). The present paper provides an overview of the topics covered within the curriculum, called ‘AgBioData Curriculum for Ag FAIR Data,’ its audience and modalities, and how it will positively impact all the different stakeholders of the agricultural database ecosystem. We hope the modular curriculum presented here can help scientists and students understand and support database use in all aspects of improving our global food system. Database URL: https://zenodo.org/records/14278084 
    more » « less
  3. Harris, T (Ed.)
    Abstract The rapid increase in the number of reference-quality genome assemblies presents significant new opportunities for genomic research. However, the absence of standardized naming conventions for genome assemblies and annotations across datasets creates substantial challenges. Inconsistent naming hinders the identification of correct assemblies, complicates the integration of bioinformatics pipelines, and makes it difficult to link assemblies across multiple resources. To address this, we developed a specification for standardizing the naming of reference genome assemblies, to improve consistency across datasets and facilitate interoperability. This specification was created with FAIR (Findable, Accessible, Interoperable, and Reusable) practices in mind, ensuring that reference assemblies are easier to locate, access, and reuse across research communities. Additionally, it has been designed to comply with primary genomic data repositories, including members of the International Nucleotide Sequence Database Collaboration consortium, ensuring compatibility with widely used databases. While initially tailored to the agricultural genomics community, the specification is adaptable for use across different taxa. Widespread adoption of this standardized nomenclature would streamline assembly management, better enable cross-species analyses, and improve the reproducibility of research. It would also enhance natural language processing applications that depend on consistent reference assembly names in genomic literature, promoting greater integration and automated analysis of genomic data. This is a good time to consider more consistent genomic data nomenclature as many research communities and data resources are now finding themselves juggling multiple datasets from multiple data providers. 
    more » « less
    Free, publicly-accessible full text available January 15, 2026
  4. McIntyre, L (Ed.)
    Abstract Genome sequencing for agriculturally important Rosaceous crops has made rapid progress both in completeness and annotation quality. Whole genome sequence and annotation give breeders, researchers, and growers information about cultivar-specific traits such as fruit quality and disease resistance, and inform strategies to enhance postharvest storage. Here we present a haplotype-phased, chromosomal-level genome of Malus domestica, ‘WA 38’, a new apple cultivar released to market in 2017 as Cosmic Crisp®. Using both short and long-read sequencing data with a k-mer-based approach, chromosomes originating from each parent were assembled and segregated. This is the first pome fruit genome fully phased into parental haplotypes in which chromosomes from each parent are identified and separated into their unique, respective haplomes. The two haplome assemblies, ‘Honeycrisp’ originated HapA and ‘Enterprise’ originated HapB, are about 650 Megabases each, and both have a BUSCO score of 98.7% complete. A total of 53,028 and 54,235 genes were annotated from HapA and HapB, respectively. Additionally, we provide genome-scale comparisons to ‘Gala’, ‘Honeycrisp’, and other relevant cultivars highlighting major differences in genome structure and gene family circumscription. This assembly and annotation was done in collaboration with the American Campus Tree Genomes project that includes ‘WA 38’ (Washington State University), ‘d’Anjou’ pear (Auburn University), and many more. To ensure transparency, reproducibility, and applicability for any genome project, our genome assembly and annotation workflow is recorded in detail and shared under a public GitLab repository. All software is containerized, offering a simple implementation of the workflow. 
    more » « less
  5. Abstract Cultivated pear consists of several Pyrus species with Pyrus communis (European pear) representing a large fraction of worldwide production. As a relatively recently domesticated crop and perennial tree, pear can benefit from genome-assisted breeding. Additionally, comparative genomics within Rosaceae promises greater understanding of evolution within this economically important family. Here, we generate a fully phased chromosome-scale genome assembly of P. communis ‘d’Anjou.’ Using PacBio HiFi and Dovetail Omni-C reads, the genome is resolved into the expected 17 chromosomes, with each haplotype totaling nearly 540 Megabases and a contig N50 of nearly 14 Mb. Both haplotypes are highly syntenic to each other and to the Malus domestica ‘Honeycrisp’ apple genome. Nearly 45,000 genes were annotated in each haplotype, over 90% of which have direct RNA-seq expression evidence. We detect signatures of the known whole-genome duplication shared between apple and pear, and we estimate 57% of d’Anjou genes are retained in duplicate derived from this event. This genome highlights the value of generating phased diploid assemblies for recovering the full allelic complement in highly heterozygous crop species. 
    more » « less